首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15652篇
  免费   2323篇
  国内免费   2285篇
化学   11403篇
晶体学   585篇
力学   2440篇
综合类   103篇
数学   757篇
物理学   4972篇
  2024年   21篇
  2023年   212篇
  2022年   404篇
  2021年   531篇
  2020年   892篇
  2019年   626篇
  2018年   562篇
  2017年   663篇
  2016年   924篇
  2015年   835篇
  2014年   958篇
  2013年   1321篇
  2012年   877篇
  2011年   1104篇
  2010年   914篇
  2009年   932篇
  2008年   1063篇
  2007年   1082篇
  2006年   983篇
  2005年   852篇
  2004年   781篇
  2003年   731篇
  2002年   474篇
  2001年   458篇
  2000年   370篇
  1999年   281篇
  1998年   253篇
  1997年   197篇
  1996年   166篇
  1995年   123篇
  1994年   130篇
  1993年   97篇
  1992年   78篇
  1991年   64篇
  1990年   55篇
  1989年   43篇
  1988年   26篇
  1987年   32篇
  1986年   33篇
  1985年   20篇
  1984年   21篇
  1983年   18篇
  1982年   16篇
  1981年   7篇
  1980年   2篇
  1979年   9篇
  1978年   3篇
  1977年   4篇
  1971年   6篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
Sulfonic acid based mesostructures (SAMs) have been developed in recent years and have important catalytic applications. The primary applications of these materials are in various organic synthesis reactions, such as multicomponent reactions, carbon–carbon bond couplings, protection reactions, and Fries and Beckman rearrangements. This review aims to provide an overview of the recent developments in the field of SAMs with a particular emphasis on the reaction scope and advantages of heterogeneous solid acid catalysts.  相似文献   
52.
Microporous carbons afford high surface areas, large pore volumes, and good conductivity, and are fascinating over a wide range of applications. Traditionally synthesized microporous carbon materials usually suffer from some limitations, such as poor accessibility and slow mass transport of molecules due to the micrometer-scale diffusion pathways and space confinement imposed by small pore sizes. Two-dimensional microporous carbon materials, denoted as microporous carbon nanosheets (MCNs), possess nanoscale thickness, which allows fast mass and heat transport along the z axis; thus overcoming the drawbacks of their bulk counterparts. Herein, recent breakthroughs in the synthetic strategies for MCNs are summarized. Three typical methods are discussed in detail with several examples: pyrolysis of organic precursors with 2D units, a templating method that uses wet chemistry, and the molten salt method. Among them, molecular-based assembly of MCNs in the liquid phase shows more controllable morphology, thickness, and pore size distribution. Finally, challenges in this research area are discussed to inspire future explorations.  相似文献   
53.
The practical application of advanced personalized electronics is inseparable from flexible, durable, and even self-healable energy storage devices. However, the mechanical and self-healing performance of supercapacitors is still limited at present. Herein, highly transparent, stretchable, and self-healable poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA)/poly(vinyl alcohol) (PVA)/LiCl polyelectrolytes were facilely prepared by one-step radical polymerization. The cooperation of PAMPSA and PVA significantly increased the mechanical and self-healing capacity of the polyelectrolyte, which exhibited superior stretchability of 938 %, stress of 112.68 kPa, good electrical performance (ionic conductivity up to 20.6 mS cm−1), and high healing efficiency of 92.68 % after 24 h. After assembly with polypyrrole-coated single-walled carbon nanotubes, the resulting as-prepared supercapacitor had excellent electrochemical properties with high areal capacitance of 297 mF cm−2 at 0.5 mA cm−2 and good rate capability (218 mF cm−2 at 5 mA cm−2). Besides, after cutting in two the supercapacitor recovered 99.2 % of its original specific capacitance after healing for 24 h at room temperature. The results also showed negligible change in the interior contact resistance of the supercapacitor after ten cutting/healing cycles. The present work provides a possible solution for the development of smart and durable energy storage devices with low cost for next-generation intelligent electronics.  相似文献   
54.
The design of new solid-state proton-conducting materials is a great challenge for chemistry and materials science. Herein, a new anionic porphyrinylphosphonate-based MOF ( IPCE-1Ni ), which involves dimethylammonium (DMA) cations for charge compensation, is reported. As a result of its unique structure, IPCE-1Ni exhibits one of the highest value of the proton conductivity among reported proton-conducting MOF materials based on porphyrins (1.55×10−3 S cm−1 at 75 °C and 80 % relative humidity).  相似文献   
55.
56.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
57.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
58.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
59.
A facile and environmentally friendly approach has been developed to prepare yolk‐shell porous microspheres of calcium phosphate by using calcium L ‐lactate pentahydrate (CL) as the calcium source and adenosine 5′‐triphosphate disodium salt (ATP) as the phosphate source through the microwave‐assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk‐shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk‐shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as‐prepared yolk‐shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH‐responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk‐shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.  相似文献   
60.
A series of Pd–Ag mixed‐metal nanocatalysts were prepared by reduction of Pd–Ag salts in the presence of poly(propylene imine) dendrimers, which were covalently bound to the surface of a silica polyamine composite, BP‐1 (polyallylamine covalently bound to a silanized amorphous silica gel). Three different Pd‐to‐Ag ratios were evaluated (50:50, catalyst 1 ; 40:60, catalyst 2 ; 60:40, catalyst 3 ) with the goal of determining how the amount of Ag effects selectivity, rate and conversion in the selective reduction of alkynes, such as phenylacetylene and 1‐ or 4‐octyne, to the corresponding alkenes. Conditions for the catalysis are reported where there is improved selectivity without a serious reduction in rate when compared with the analogous Pd‐only catalysts. Catalyst 2 worked best for phenylacetylene and catalyst 3 worked best for the octynes. The catalysts could be reused seven times without loss of activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号